Designing Arithmetic Digital Circuits via Rewriting-Logic∗

Mauricio Ayala-Rincón† Reiner W. Hartenstein‡ Ricardo P. Jacobi§ Carlos H. Llanos¶ Wander J. de Queroz∥

Abstract

In this work we present our current investigation on use of rewriting-logic as a higher abstraction way to tackle digital design. Rewriting can be used to specify, simulate and even synthesize complex application specific digital systems, which provides a higher abstraction level than current system level languages. To illustrate the possibilities of rewriting-logic in the context of regular hardware structures we describe how to implement different arithmetic operators.

Keywords: Rewriting-logic, high level specification and design of digital circuits.

1 Introduction

The specification of VLSI systems in an abstract level is still an open problem. Last years we have seen a growing number of users adopting VHDL for logic and register transfer level descriptions. Although VHDL provides constructions similar to traditional programming languages, it is still not suitable for more abstract design representations. System level languages based on C, C++ and Java are emerging, that allow to describe hardware and software modules using the power of high-level programming languages. SpecC (www.specc.org) and SystemC (www.systemc.org) are probably the most popular ones nowadays. It is a common approach to describe a system using one of those languages and translate the hardware modules to VHDL for hardware synthesis [7, 8].

The use of rewriting systems to describe circuits is not a novelty. In recent years some work on applying rewriting techniques to the specification and synthesis of digital processors has been developed. It is worth to mention the work of Kapur and Subramaniam, who have used successors of the well-known Rewriting Rule Laboratory - RRL for verifying arithmetic circuits [10, 11] as well as the work of Arvind’s group that treated the design of processors over simple architectures [15, 16, 1] and synthesis of digital circuits [9]. His approach to architectural specification was to describe simple RISC processors using rewriting systems and to translate these specifications to a standard hardware description language like Verilog for simulation purposes. That approach introduces the cost of program translation, since rewriting systems are only used to specify and not to simulate the design. In [2] we have addressed the specification as well as the simulation via the rewriting-logic environment ELAN [6]. In that work rewriting-logic based specification and further simulation of simple RISC processors were addressed while it was illustrated the design exploration of some architectural alternatives, like branch prediction in speculative processors and out-of-order execution for which the use of logical strategies was essential: the former was simulated by pure rewriting and the latter by logic strategies. In [3] we validated an implementation of the Fast Fourier Transform - FFT over a dynamically reconfigurable systolic array of linear size in ELAN. Classical circuits for the FFT are of size $O(n \ln(n))$ which makes our specification of great relevance. In that work the specification of the systolic array was done via rewriting rules and the control of reconfiguration and execution steps of the processor

∗Supported by CAPES/DFG Brazilian/German foundations.
†Corresponding author. Departamento de Matemática, Universidade de Brasília, Brasília D.F., Brasil. ayala@mat.unb.br.
P partially supported by CNPq Brazilian council.
‡Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany. hartenstein@informatik.uni-kl.de.
§Departamento de Ciência da Computação, Universidade de Brasília, Brasília D.F., Brasil. jacobi@unb.br.
¶Departamento de Engenharia Mecânica, Universidade de Brasília, Brasília D.F., Brasil. llanos@unb.br.
∥Departamento de Microeletrônica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.
was done via logic strategies. All that work makes it evident that rewriting(-logic) can be used to specify, simulate and even synthesize complex application specific digital systems, which provides a higher abstraction level than current system level languages. In particular, rewriting-logic based specification is a promising tool for the task of conceiving efficient implementations over dynamically reconfigurable architectures, were the old notion of software being executed over fixed hardware is being changed by sophisticated notions such as “configware” and “morphware” which combine reconfiguration and execution instructions in a new computing paradigm adequate for current microelectronic technology development [5].

In this work we are going to specify and design lower levels of hardware by illustrating how rewriting can be used as a higher abstraction way to tackle digital design of simple arithmetic operators.

We discuss on the rewrite based specification of arithmetic operators and how to obtain equivalent algebraic expressions which are adequate for assisting the circuit design phases. Three simple arithmetic operators are considered: Tally, Convolution and Multiplier.

2 Designing circuits for simple arithmetic operators

We suppose the reader is familiar with the notions of rewriting theory as presented in [4] and with simple notions of digital circuits as in [12].

One of our current goals is to analyze the possibilities of using rewriting to synthesize circuits for simple algebraic operations. Properties of shift-left (shl) and shift-right (shr) binary operators used in algebraic circuits synthesis can be naturally described in a rewriting-based language. The set of rewriting rules below describes some properties of these operators over binary number variables \(w, u \) and \(v \), that will be further showed useful in this context.

\[
\begin{align*}
2 \cdot w & \rightarrow \text{shl}(w) \\
\text{shl}(\text{shl}(w)) & \rightarrow w \\
\text{shl}(\text{shr}(w)) & \rightarrow w \\
\text{shr}(u) + \text{shr}(v) & \rightarrow \text{shr}(u + v) \\
\text{shr}(u) + \text{shl}(v) & \rightarrow \text{shl}(u + v)
\end{align*}
\]

In addition to the rules for \(\text{shl} \) and \(\text{shr} \), algebraic rules for the operation of selection of the \(i^{th} \) less significant bit of a binary number \(Y \), \(\Pi(Y, i) \), can be stated as

\[
\Pi(Y, 0) \rightarrow \text{lsb}(Y) \\
\Pi(Y, \text{succ}(n)) \rightarrow \Pi(\text{shr}(Y), n)
\]

where \(\text{lsb} \) denotes the least significant bit operator and \(\text{succ} \) and \(0 \) are the usual constructors for the natural numbers. Then \(y_0 \) corresponds to \(\text{lsb}(Y) \); \(y_1 \) to \(\text{lsb}(\text{shr}(Y)) \), \(y_2 \) to \(\text{lsb}(\text{shr}^2(Y)) \) and \(y_3 \) to \(\text{lsb}(\text{shr}^3(Y)) \).

To illustrate the possibilities of rewriting in the context of regular hardware structures we describe how to implement different algebraic operators.

2.1 Tally

The tally operator gives the number of 1’s occurring in a binary word \(X \) of length \(n \). Then tally may be built by the following algorithm:

\[
\begin{align*}
\text{function tally}(X) \\
\text{begin} \\
\text{Output} := 1; \\
\text{For} i=1 \text{ to length}(X) \text{ do} \\
\text{if} X[i] = 1 \text{ then Output}:=\text{Output} \times 2 \\
/* \text{ else Output}:=\text{Output} \times 1 */
\end{align*}
\]

where output represent a binary word of \(n + 1 \) bits. For instance, if the number of 1’s of \(X \) of length 5 is 3 the output value is 001000.

The \(\text{tally}(X) \) for \(X \) of length \(n \) can be formulated as

\[
\Pi_{i=1}^{n} \text{ if } x_i = 1 \text{ then } 2 \text{ else } 1
\]
or equivalently
\[\prod_{i=1}^{n} (x_i + 1) \]

By including the algebraic formulation of the selection of the \(i^{th}\) bit of the word \(X\) we obtain
\[\prod_{i=0}^{n-1} (\text{lsb}(\text{shr}(X)) + 1) = (\text{lsb}(X) + 1) \times (\text{lsb}(\text{shr}(X)) + 1) \times \ldots \times (\text{lsb}(\text{shr}^{n-1}(X)) + 1) \]

from which we can infer the circuit presented in the Figure 1.

![Figure 1: Circuit for tally](image)

With some additional algebraic/rewriting work we can find more efficient implementations. In fact, observe the following simple reformulation of the previous algorithm:

```plaintext
function tally'(X)
begin
    Output := 1;
    For i=1 to length(X) do
        2*(if X[i]=1 then Output else Output/2)
    end
end
```

that can be specified recursively as

\[
F_0 = 1; \\
F_k = 2 \times (\text{if } x_k = 1 \text{ then } F_{k-1} \text{ else } F_{k-1}/2)
\]

The last expression can be rewritten to

\[
F_k = \text{shl}(\text{if } x_k = 1 \text{ then } F_{k-1} \text{ else } \text{shr}(F_{k-1}))
\]

Observe, for instance, that \(F_2\) is equal to

\[
\text{shl}(\text{if } x_2 = 1 \text{ then } \text{shl}(\text{if } x_1 = 1 \text{ then } 1 \text{ else } \text{shr}(1)) \text{ else } \text{shr}(\text{shl}(\text{if } x_1 = 1 \text{ then } 1 \text{ else } \text{shr}(1))))
\]

We can observe that the rewriting expression has a problem because \(\text{shr}(1) = 0\). This can be solved initializing with \(\text{Output} = 10\), whose effect is multiply by two the whole expression. In this case is necessary to apply the \(\text{shr}\) operator to the resulting \(\text{Output}\). Thus for \(F_2\) the last expression is transformed into:

\[
\text{shl}(\text{if } x_2 = 1 \text{ then } \text{shl}(\text{if } x_1 = 1 \text{ then } 10 \text{ else } \text{shr}(10)) \text{ else } \text{shr}(\text{shl}(\text{if } x_1 = 1 \text{ then } 10 \text{ else } \text{shr}(10))))
\]
from the regularities in the previous expression we can infer the simpler circuit of the Figure 2.

The circuit in the Figure 2 has included *comparators circuits* in order to test the X_i value (0 or 1). This version is better than the circuit showed in the Figure 1 in several ways; for instance, the comparison and the shl binary circuits are cheaper than the addition and multiplier circuits used in the first tally version.

2.2 Multiplier

In the previous two examples rewriting is used as an assistant tool for deducing appropriate algebraic terms with many regularities. Detection of regularities is done in an *ad hoc* manner. We show that in more detail in the following example of multiplication. The desired multiplication may be established as $\sum_{i=0}^{3} 2^i \cdot (y_i \cdot X)$ that is equal to $2^0 \cdot (y_0 \cdot X) + 2^1 \cdot (y_1 \cdot X) + 2^2 \cdot (y_2 \cdot X) + 2^3 \cdot (y_3 \cdot X)$.

By applying the rewrite rules for shl and shr, we obtain

$$\sum_{i=0}^{3} 2^i \cdot (y_i \cdot X) \rightarrow^* y_0 \cdot X + shl(y_1 \cdot X) + shl^2(y_2 \cdot X) + shl^3(y_3 \cdot X)$$

were by shl^n and shr^m we denote n and m compositions of the operators shl shr, respectively.

Replacing adequately the previous patterns at the expression $y_0 \cdot X + shl(y_1 \cdot X + shl(y_2 \cdot X + shl(y_3 \cdot X)))$, we obtain

$$\sum_{i=0}^{3} 2^i \cdot (y_i \cdot X) \rightarrow^* y_0 \cdot X + shl(y_1 \cdot X + shl^2(y_2 \cdot X) + shl^3(y_3 \cdot X))$$

from which we can notice the regularities that will be useful for the construction of the desired circuit schema:

$$\text{lbs}(Y) \cdot X + shl(lsb(shr(Y))) \cdot X +\underbrace{\text{condAddShift}}_{\text{condAddShift}}$$

$$shl(lsb(shr^2(Y))) \cdot X + shl(lsb(shr^3(Y))) \cdot X + \bar{0})) +\underbrace{\text{condAddShift}}_{\text{condAddShift}}$$

In order to obtain more regularity than in the previous expression we can precede the whole expression with “$shr(shl)$”. But the main problem of the resulting expression is that the first condAddShift port has as input y_3, that is the last of the four bits of Y that can be computed with sequences of the form
Figure 3: Circuit schema for 4-bit numbers multiplication

\[\text{lsb(shr(...(Y)...))}. \] To avoid this problem from the pure beginning observe that

\[
\begin{align*}
\sum_{i=0}^{3} 2^i (y_i \cdot X) &= 2^4 \sum_{i=0}^{3} \text{shr}^{4-i} (y_i \cdot X) \rightarrow^* \\
\text{shr}^4 (\text{shr}(y_3 \cdot X) + \text{shr}^2 (y_2 \cdot X) + \text{shr}^3 (y_1 \cdot X) + \text{shr}^4 (y_0 \cdot X)) \rightarrow^* \\
\text{shr}^4 (\text{shr}(y_3 \cdot X + \text{shr}(y_2 \cdot X + \text{shr}(y_1 \cdot X + \text{shr}(y_0 \cdot X)))))) \\
= \text{shr}^4 (\text{shr}(\text{lsb}(\text{shr}(y^3 (Y)))) \cdot X + \text{shr}(\text{lsb}(\text{shr}(y^2 (Y)))) \cdot X + \\
\text{shr}(\text{lsb}(\text{shr}(y (Y)))) \cdot X + \text{shr}(\text{lsb}(y (Y)))))))
\end{align*}
\]

Regularities of the internal expression (without the external \(\text{shr}^4 \)) can be described as

\[
\begin{align*}
\text{shr}(\text{lsb}(\text{shr}(y^3 (Y)))) \cdot X + \\
\text{CondAddShift} \\
\text{shr}(\text{lsb}(\text{shr}(y^2 (Y)))) \cdot X + \\
\text{CondAddShift} \\
\text{shr}(\text{lsb}(y (Y))) \cdot X + \\
\text{CondAddShift}
\end{align*}
\]

And from that expression one can straightforwardly build and schema for the desired circuit schema presented in the Figure 3.

One of the interesting particularities of rewriting that emerges in this context is that rewriting should be directed to normal forms that are not simplified as usual. Namely, rewriting should be guided here in such a way that the obtained canonical forms are simple from the point of view of hardware implementation. That is not the standard in what we could call classical algebraic rewriting, where terms are simplified to shorter and simpler forms.
2.3 Shift

CMOS technology is based on NAND ports and in many hardware design tasks the sole use of translation mechanisms from logical expressions may be of great relevance. In particular, the use of rewriting and logical strategies available in rewriting-logic environments may be of great usefulness for the specific task of translating general logic expressions into equivalent expressions restricted to be built only with certain logical connectives like NAND. This translation may be of interest, for converting logical descriptions into initial prototypes of practical interest.

As an example we will observe the following classical 4-bit circuit for the operator shift which implements both shl and shr by using an extra boolean control parameter λ. See Figure 4.

\[
\text{shift}(\lambda, [a_0, a_1, a_2, a_3]) = \neg\lambda \lor a_1, (a_0 \lor \lambda) \land (a_2 \lor \neg\lambda), (a_1 \lor \lambda) \land (a_3 \lor \neg\lambda), a_2 \lor \lambda
\]

Observe that this expression operationally corresponds to the operators shl and shr when selecting the parameter λ as 0 and 1, respectively. In the language of ELAN, for instance, this operator can be defined as a rewriting rule of the form

\[
[] \text{shift}(c,[x_0,x_1,x_2,x_3]) => [s_0, s_1, s_2, s_3]
\]

where \(s_0:=(\text{TRANS}) \neg c \land x_1\)

where \(s_1:=(\text{TRANS}) (x_0 \land c) \lor (x_2 \land \neg c)\)

where \(s_2:=(\text{TRANS}) (x_1 \land c) \lor (x_3 \land \neg c)\)

where \(s_3:=(\text{TRANS}) x_2 \land c\)

\text{shift} is an operator from \(\text{Bool} \times \text{InOut}\) into \(\text{InOut}\), where \(\text{InOut}\) is a sort for describing inputs/outputs, which consist of tuples of booleans. In this rewriting rule we have included the use of a strategy of translation \(\text{TRANS}\) for simplifying the boolean expressions, which is applied to each of the four outputs \(s_0, s_1, s_2, s_3\). This strategy is based on rewriting rules for the transformation of boolean expressions into boolean expressions which consist of the sole logical connective NAND, which we have implemented as

\[
\text{rules for } \text{Bool}
\]

\[
x, y : \text{Bool};
\]

\[
\text{global}
\]

\[
[\text{exp}] \neg x => x \text{ nand } x\end{eqnarray}
\]
The strategy TRANS is implemented as

strategies for Bool
 implicit
 [] TRANS => normalise(log);normalise(exp);normalise(simpl)
end
end

Then when rewriting the expression “shift(λ,[a0,a1,a2,a3])”, for some adequate boolean variables defined in the specification, we obtain the following reduced expression which consists of NAND connectives only.

\[
(((\lambda \text{nand} \lambda) \text{nand} a1) \text{nand} (((\lambda \text{nand} \lambda) \text{nand} a1)),
((a0 \text{nand} \lambda) \text{nand} (a2 \text{nand} (\lambda \text{nand} \lambda))),
((a1 \lambda \text{nand} \lambda) \text{nand} (a3 \text{nand} (\lambda \text{nand} \lambda))),
((a2 \lambda \text{nand} \lambda) \text{nand} (a2 \text{nand} \lambda)))
\]

Regularities are underbraced. Notice that $\lambda \text{nand} \lambda \equiv \neg \lambda$. From the last expression we can build the logical circuit for the general shift operator which depends only on the connective NAND drawn in the Figure 5.

The ELAN specification is presented in the appendix A. For other desired technologies, based for instance in gates NOR and NOT only, it is very natural to define the adequate translation rewriting rules and strategy. Furthermore, once the desired component is selected we can also define adequate strategies over the original
specification for simulating the execution of circuits. We illustrate this by showing how our specification can be enlarged for simulating the general shift operator.

We add rewriting rules for simulating the application of boolean connectives (notice that we don’t import the booleans from the ELAN library for having the whole control).

rules for bool

\[
\begin{align*}
&x, y : \text{bool}; \\
&\text{global} \\
&\quad \ldots \\
&\text{[sim]} \quad 0 \text{ and } 0 \Rightarrow 0 \\
&\text{[sim]} \quad 0 \text{ and } 1 \Rightarrow 0 \\
&\text{[sim]} \quad 1 \text{ and } 0 \Rightarrow 0 \\
&\text{[sim]} \quad 1 \text{ and } 1 \Rightarrow 1 \\
&\text{[sim]} \quad \text{not } 1 \Rightarrow 0 \\
&\text{[sim]} \quad \text{not } 0 \Rightarrow 1 \\
&\text{[sim]} \quad x \text{ or } y \Rightarrow \text{not}((\text{not } x) \text{ and } (\text{not } y)) \\
\end{align*}
\]

end

Additionally, we add a new rule and a strategy for normalizing of booleans restricted to the previous rewriting rules.

strategies for bool

\[
\text{implicit} \\
\quad [\text{TRANS}] \Rightarrow \text{normalise(log)};\text{normalise(exp)};\text{normalise(simpl)} \end{align*}
\]

\[
\quad [\text{SIMUL}] \Rightarrow \text{normalise(sim)} \end{align*}
\]

end

rules for InOut

\[
\begin{align*}
&x_0, y_0, x_1, y_1, x_2, x_3, s_0, s_1, s_2, s_3, c : \text{bool}; \\
&\text{global} \\
&\quad \ldots \\
&\text{[SM]} \quad \text{shift}(c,[x_0,x_1,x_2,x_3]) \Rightarrow [s_0, s_1, s_2, s_3] \\
&\quad \quad \text{where } s_0 := (\text{SIMUL}) (\text{not } c) \text{ and } x_1 \\
&\quad \quad \text{where } s_1 := (\text{SIMUL}) (x_0 \text{ and } c) \text{ or } (x_2 \text{ and } \text{not } c) \\
&\quad \quad \text{where } s_2 := (\text{SIMUL}) (x_1 \text{ and } c) \text{ or } (x_3 \text{ and } \text{not } c) \\
&\quad \quad \text{where } s_3 := (\text{SIMUL}) x_2 \text{ and } c \end{align*}
\]

end

Notice that this strategy, instead of translating the boolean expressions, will apply the boolean operations to specific given inputs.

Finally, for normalizing ground instances of the shift operator an additional strategy is included for the sort InOut which will allow for normalization via the SM rule for this operator.

strategies for InOut

\[
\text{implicit} \\
\quad \ldots \\
\quad [\text{SIMUL}] \Rightarrow \text{normalise(SM)} \end{align*}
\]

end

Then when providing ground goals of the form \text{shift}(0,[1,0,1,0]) we will obtain the corresponding output of this component, that is \([0,1,0,0]\) or the \text{shl} of the given input \([1,0,1,0]\). Similarly, \text{shift}(1,[1,0,1,1]) gives the result \([0,1,0,1]\), which is the \text{shr} of the given input \([1,0,1,1]\).

Unlike the necessary effort which is usual in functional languages like Haskell for hardware design (see for example [14]), in ELAN we can profit from the natural flexibility provided by the separation between
rewriting and logical strategies, has been also of relevance in other contexts of hardware specification such as the one of reconfigurable architectures, where one can separate the specification of the hardware from the control of reconfiguration and execution steps via logic strategies [3].

3 Conclusions and future work

We exemplified how sequential digital circuits that implement the Tally, Convolution and Multiplier arithmetic operators may be algebraically specified and treated by rewriting. The high degree of abstraction provided by rewriting systems makes it possible to specify digital circuits in a higher level than the given by other programming environments. This is very important in digital design where the high level of complexity makes it necessary to handle millions of transistors per square centimeter. Rewriting allows for estimations of the behavior of the circuits before logical synthesis phases. Specifying digital circuits by rewriting techniques permits to extract directly a spacial implementation; in fact, we illustrated how the spacial implementations can be improved using a time domain implementation, and we showed how to obtain these improvements starting from the regularities of the shl and shr operators.

One interesting aspect that emerges from this study is the necessity of new hardware oriented notions of normal forms, since the algebraic expressions that are more suitable to hardware mapping are those with more regularities (and consequently those that can be implemented with regular hardware structures) and not the simplest ones from the algebraic point of view, that is the usual goal when simplifying by rewriting.

Much work remains to be done. In particular, our rewriting specification language is being enriched with other operators which provide additional semantics for sequential/parallel and spatial/temporal hardware notions such as delay, multiplexer operators, etc. Furthermore, the translation of rewriting specifications (to high level description hardware languages like Verilog and VHDL and) to the language of layout circuit design tools is essential to enable the necessary dynamism between the rewrite based algebraic manipulation and the corresponding circuit design.

References

Sigplan Int. Conf. on Functional Programming, 1998.

A ELAN specification of transformation rules and strategies

Here we included the translation rules for boolean expression we have used in the construction of the circuit
for the general shift operator.

module nxor[varbool]

 import global

 varbool eq[variable] identifier list[identifier];

end

sort bool varbool InOut;

end

operators global

 FOR EACH Id:identifier SUCH THAT Id:=(listExtract) elen(varbool) :
 { Id : varbool; }
 @ : (varbool) bool;
 0 : bool;
 1 : bool;
 0 xor 0 : (bool bool) bool;
 (0 xor 0) : (bool bool) bool alias 0 xor 0 ;
 not 0 : (bool) bool;
 not (0) : (bool) bool alias not 0 ;
 (not 0) : (bool) bool alias not 0 ;
 @ and 0 : (bool bool) bool;
 (@ and 0) : (bool bool) bool alias @ and 0 ;
 @ or 0 : (bool bool) bool;
 (@ or 0) : (bool bool) bool alias @ or 0 ;
 @ nor 0 : (bool bool) bool;
 (@ nor 0) : (bool bool) bool alias @ nor 0 ;
 @ imp 0 : (bool bool) bool;
 (@ imp 0) : (bool bool) bool alias @ imp 0 ;
 @ nand 0 : (bool bool) bool;
 (@ nand 0) : (bool bool) bool alias @ nand 0 ;
 '[' @ ']': (bool) InOut;
 '[' 0 ', ']: (bool bool) InOut;
 '[' 0,0 ,']': (bool bool bool) InOut;
 '[' 0,0,0 ,']': (bool bool bool bool) InOut;

10
rules for bool

x, y : bool;

global

[exp] not x => x nand x end
[exp] x or y => (x or y) and ((not x) nand y) or (x nand (not y)) end
[exp] x and y => not (x nand y) end
[log] x or x => x end
[log] x and x => x end
[exp] x imp y => (not x) or y end
[log] not not x => x end

[simpl] (x nand x) nand (x nand x) => x end

end

strategies for bool

implicit

[] TRANS => normalise(log);normalise(exp);normalise(simpl) end
[] SIMUL => normalise(sim) end

end

rules for InOut

x0, y0, x1, y1, x2, y2, x3, s0, s1, s2, s3, c : bool;

global

[] [x1,x0] SUM2bits [y1,y0] => [s2,s1,s0]
 where s0 := (TRANS) (x0 xor y0)
 where s1 := () (x1 xor y1) xor (x0 and y0)
 where s2 := (TRANS) ((x0 and y0) and (x1 or y1)) or (x1 and y1) end
[] NEG [x1] => [not x1] end
[TR] shift(c,[x0,x1,x2,x3]) => [s0, s1, s2, s3]
 where s0 := (TRANS) (not c) and x1
 where s1 := (TRANS) (x0 and c) or (x2 and not c)
 where s2 := (TRANS) (x1 and c) or (x3 and not c)
 where s3 := (TRANS) x2 and c end
[SM] shift(c,[x0,x1,x2,x3]) => [s0, s1, s2, s3]
 where s0 := (SIMUL) (not c) and x1
 where s1 := (SIMUL) (x0 and c) or (x2 and not c)
 where s2 := (SIMUL) (x1 and c) or (x3 and not c)
 where s3 := (SIMUL) x2 and c end

end

strategies for InOut

implicit

[] TRANs => normalise(TR) end
[] SIMUl => normalise(SM) end

end
B Convolution

The convolution of two binary n-arrays X and Y is defined as the (2n − 1)-array Z whose components are given by:

\[z_i = x_0 y_i + x_1 y_{i-1} + \ldots + x_n y_0 \]

where all components \(x_j, y_j \) with \(j \not\in \{0, 1, \ldots, n-1\} \) are considered as zero. For instance, \(z_0 = x_0 y_0; z_1 = x_0 y_1 + x_1 y_0; z_{2n-1} = x_{n-1} y_{n-1} \). We show how to compute the convolution of two 3-arrays X and Y, that is

\[Z = (x_0 y_0, x_1 y_0 + x_0 y_1, x_2 y_0 + x_1 y_1 + x_0 y_2, x_2 y_1 + x_1 y_2, x_2 y_2) \]

Each component, \(z_i \), of Z can be seen as the internal product of the arrays \((x_2, x_1, x_0)\) and \((y_{i-2}, y_{i-1}, y_i)\). Thus Z can be written as

\[(\lfloor \lfloor i \rfloor_{i=0} x_2 y_{i-2} + x_1 y_{i-1} + x_0 y_i \rfloor_{i=0}) \]

By including the use of the operators and rewriting rules for the selection of bits of X and Y we obtain:

\[(\lfloor \lfloor i \rfloor_{i=0} shl(\text{shr}(X))(y_{i-2}) + \text{lsb}(\text{shr}(X))y_{i-1} + \text{lsb}(X)y_i \rfloor_{i=0}) = \]

\[(\lfloor \lfloor i \rfloor_{i=0} y_{i-2} + \text{lsb}(\text{shr}(X))y_{i-1} \rfloor_{i=0}) = \]

\[(\lfloor \lfloor i \rfloor_{i=0} y_{i-2} + \text{lsb}(\text{shr}(X))y_{i-1} \rfloor_{i=0}) = \]

from which we can infer the circuit in the Figure 6.

![Figure 6: Implementation of the convolution operator](image)

We can observe that the terms associated to \(y_i \) (i.e., where \(i \not\in \{0, 1, 2\} \)) are effectively set as zero since the shl and shr operators insert a 0 bit value in the position of the less and most, respectively, significant bit of Y.

From the logical point of view the previous circuit is satisfactory, but not from the operational one. In fact, supposing that all components of the circuit are synchronous (that in the practice is wrong and) means that the operation of each component is done in exactly one cycle of the clock), one can observe that there is no synchronization in the time the inputs of the “adder” components of the circuit are ready to be processed by these components. For instance, observe the inputs of the first adder (from left to right) in the Figure 6. The first input (in the order bottom up) is ready after two cycles: one for the simultaneous selection of the least significantly bits of X and Y (that is done through the components lsb) and one for the “multiplier” component which gives \(x_0 \ast y_0 \); the second input is ready after three cycles: two for the simultaneous selection of the second less significantly bit of X and Y (that is done through shr, shl and lsb components) and one for the multiplier component which gives \(x_1 \ast y_{i-1} \); the third input is similarly showed to be ready after four cycles as \(x_2 \ast y_{-2} \). In the practice the first adder component of a circuit implemented in this way will independently give in the third, fourth and fifth cycles as output \(x_0 \ast y_0, x_1 \ast y_{-1} \) and \(x_2 \ast y_{-2} \), respectively, and not the desired output that is \(x_0 \ast y_0 + x_1 \ast y_{-1} + x_2 \ast y_{-2} \).
Although the solution is not as simple as we will further comment, for obtaining the necessary synchrony in these inputs we include a delay operator \(dl \) whose logical effect is vacuous and whose effect in digital circuits is to delay one cycle of the clock the input operator. By using this operator we will balance our last algebraic expression obtaining the following one:

\[
\left(\sum_{j=0}^{4} \sum_{i=0}^{2} dl(i) \right) \cdot \left(\text{lsb} \left(\text{shl} \left(X \right) \right) \right) \cdot \left(\text{lsb} \left(\text{shl} \left(Y \right) \right) \right) \]

In this way for all \(i = 0, \ldots, 4 \) all factors of the multiplication in the terms of the sum are computed in the same number of cycles: \(i + j + 1 \). For instance, for \(i = 0 \) the factors \(z_0 \) and \(y_0 \) of the first term of the sum are computed in three cycles as \(\text{dl}^3 \left(\text{lsb} \left(\text{shl} \left(X \right) \right) \right) \) and \(\text{lsb} \left(\text{shl} \left(\text{dl}^2 \left(\text{shl} \left(Y \right) \right) \right) \right) \), as well as the factors of the second term \(x_1 \) and \(y_1 \), that are computed as \(\text{dl}^1 \left(\text{lsb} \left(\text{shl} \left(X \right) \right) \right) \) and \(\text{lsb} \left(\text{shl} \left(\text{dl}^1 \left(\text{shl} \left(Y \right) \right) \right) \right) \), respectively. Three cycles are as well needed for computing the factors \(x_2 \) and \(y_2 \). The final circuit is presented in the Figure 7.

![Figure 7: Synchronously circuit for the convolution operator](image)

The last circuit is only useful for illustrative proposals, since in the practice the components of a circuit are asynchronous contrarily to our supposition. Furthermore the \(y_i \)’s inputs of the \(\ast \) operators can not be given as presented, but distributed through a multiplexer component.

For giving more realistic circuits than the previous one the implementation in the Figure 6 deserves some comments. It is the result of the expansion of the terms of the equation above where some simple optimizations can be performed. One of them is the elimination of redundancy in the generation of \(y_i \) terms. For instance, \(y_0 \) appears three times in the expanded expression. The trivial mapping of the expression into a circuit structure would produce three combinations of shifts that result in \(y_0 : \text{lsb}(Y) \), \(\text{lsb}(\text{shr}(\text{shl}(Y))) \) and \(\text{lsb}(\text{shr}(\text{shl}(\text{shl}(Y)))) \), which is useless. Of course, such redundancy is detected after rewriting these terms (into \(\text{lsb}(Y) = y_0 \)) and comparing all three normal forms of these terms. The circuit where these redundancies are eliminated is showed in the Figure 8. In the generation of the circuit, only one \(y_0 \) is produced and each reference to it is associated to a new connection (wire). Moreover, the expression produced by rewriting can be interpreted either in the spatial domain or in the time domain.

In the spacial domain (for instance, Figures 6 and 8), the operators \(+ \) and \(\ast \) are replicated in order to process the data in parallel, in a combinational way. The input data flows through a network of components and the result is attained directly from the processing of the input values. This type of implementation aims to reduce the computing time by expending more hardware resources.

On the other hand, in the time domain, the operations are sequentialized using the clock as a time reference. The idea is to reduce hardware resources by reusing modules to compute the same operation over different data at different times. For example, instead of implementing two adders to perform two simultaneous sums, one could use only one adder and perform the two sums in different clock cycles. The minimization of hardware resources is obtained at the expenses of a larger computing time. In fact, it is possible to combine both approaches, trading of delay and hardware resources. Sequentializing can be
increased by processing one bit at a time. In this case, data is input through shift registers, one bit at each clock cycle. The output is obtained one bit at a time, and there is only one output to the circuit.

Thus, based on the same expression produced by rewriting, one can depict the circuit in the Figure 9. There is only one operator of each type. The logic product is iterated \(j \) times to produce each \(z_i \). An additional memory element is introduced in the feedback path from the logic sum operator and its input. It stores temporary values and produces one output every three cycles, corresponding to a complete iteration over \(j \). In this implementation, \(Y \) and \(X \) are input in the beginning of a \(j \) cycle and are shifted three times to produce the corresponding output. \(Y \) is loaded at different positions in a seven bits register, corresponding to the different values of \(i \). The Figure illustrates the position of \(Y \) for the cases where \(i = 0 \) and \(i = 4 \). The output is computed one bit every three cycles and it is input to a shift register that will store the 5 bit value after 15 clock cycles.

An intermediate solution can be obtained by selectively expanding some iterations in the space domain. The circuit in the Figure 10 shows an alternative where the interaction over \(j \) is expanded, producing three logic product modules. The \textit{shifts} and \textit{lsb} operators applied on \(Y \) and \(X \), in this case, do not iterate over time. In fact, from the hardware point of view, the composition of operator \(\text{lsb}(\text{shr}^k(Y)) \) is implemented directly by a wire connected to bit \(k \) of the register. After \(X \) and \(Y \) are
loaded, with two trailing zeros to represent y_{-1} and y_{-2}, the result is computed in 5 clock cycles.

For comparison purposes, the parallel implementation produces the result after one clock cycle, while the sequential one takes 15 clock cycles.