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Makimoto’s wave [1] [2] models the history and
predicts the future of mainstream integrated circuit
(IC) applications (figure 1, slide 1). Hartenstein also
used Makimoto’'s wave as a coordinate system to
model the history of computing [3] [4] (slide 2),
where the mainframe age was before Makimoto’s
wave. Makimoto’s law is as important as Gordon
Moore’s law. Both laws are synchronized with the
market introduction of the integrated circuit.
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Fig. 1: Makimoto’s wave: history of change in integrated circuit use
first wave (rubylith age), and, second wave (PC age)

The first waveis determined by hardwired
designs implemented by LSI CAD (figure 2 a). Nick
Tredennick classifies this phase of IC mainstream
application history by ,resources fixed and
algorithms fixed* (figure 3 a). The number of
designs was exploding going toward a dominance of
customized designs. Increasing design complexity
due to Moore’s law lead to the first design crisis, first

discussed in 1975.
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Fig. 2: Synthesis a) hardwired, b) “von Neumann”, c) reconfigurable.

Makimoto's second wave has been caused by
the introduction of the microprocessor and memory
microchips (figure 1 b) as standard components
(first half of 2nd wave). Nick Tredennick classifies
this phase of IC application history by ,resources
fixed and algorithms variable* (figure 3 b). This
.new" kind of design flow (figure 2 b), being a
sreplacement of the soldering iron by the keyboard*
[5] [6], has been a major revolution. But preparing a
revolution takes time. It has been reported, that intel
needed to give courses to a quarter million people to
be able to sell microprocessors at all.
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Fig. 3: Makimoto’'s wave & Tredennick’s paradigm shift model.

Accelerators. Due to the microprocessor’s
sequential nature of operation its weakness requires
an increasing number of accelerator co-processor
designs of growing complexity. Finally most of the
silicon real estate is covered by auxiliary circuitry
needed for support [5] [6]. This heavily growing
customized circuit demand has triggered the 2nd
half wave of Makimoto’'s second wave (figure 1). A
transition to a software / hardware split design flow
is the consequence (figure 4 b), which became
typical to the embedded systems design community.
This hardware / software chasm by this splitting of
the design flow is a severe educational problem
causing billions of dollars of damage each year: the
second design crisis.

Design Crises. Each Makimoto cycle so far has
been concluded by a design crisis ([5] [6] figure 5).
The first design crisis around the mid 70ies
stimulated massive academic research efforts by
the Mead-&-Conway rush [7] and the foundation of
the EDA industry (Electronic Design Automation
industry). The impact of the Mead-&-Conway rush
caused a major restructuring of EE and EECS
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Fig. 4: History of computing platforms: a) “von Neumann”-based
b) embedded systems, c) with programmable accelerators, d) with
mixed accelerators, e). future co-compilation (needs specific silicon
curricula world-wide - during the time of the first half
of Makimoto’s second wave (figure 1). The rapid
growth of the designer population during that time
was one of the reasons of an exploding number of
customized IC designs: second half of Makimoto’s
§econd wave (figure 1 b).
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The second design crisis. The still  existing
second design crisis stems from the facts, that
designer productivity is growing much slower than
design complexity, and, that rapidly increasing
design cost comes along with shrinking product life
cycles. EDA industry cannot meet the tool quality
requirements. A poll held during FCCM at Napa,
California, in 1998 has revealed, that more than
80% of all designers hate their tools.

Morphware has become mainstream what has
fulfilled the prediction of Makimoto’s third wave: the
accelerators have become programmable (figure 2
¢). Nick Tredennick classifies this phase of IC
application history by ,resources variable and
algorithms variable” (figure 3 c).

The configware / software chasm. Many
accelerators have become programmable. But their
application development still uses (a modified form
of) hardware design methods (figure 4 c and d). The
hardware / software chasm has turned into a
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Fig. 6: Design start statistics: ASICs versus FPGA designs.

configware / software chasm. This chasm is caused
by massive deficits in CS education and is a main
reason of the current second design crisis [8] [9].

FPGAs replacing silicon foundries? The first
half of Makimoto’s third wave shows the dominance
of FPGAs (figure 3), being a kind of standardized,
since logic gates are general purpose, and, by being
commodities. In contrast to ASICs, FPGAs do not
require specific silicon suffering from exponentially
growing mask cost and other NRE cost: a reason for
the defeat of ASIC design starts by FPGA-based
design starts (figure 6). Also the adoption rate of
silicon foundries is declining (figure 7).

The FPGA Efficiency Paradox. Because most
of the area of an FPGA microchip is covered by
wiring patterns, its integration density (transistors
per chip) is lower than the Moore curve by 2 orders
of magnitude (figure 8). But already in 1995 the
physical integration density of FPGAs had already
exceeded that of the microprocessor (figure 8).
Since FPGA layout is regularly structured like that of

[Nick Tredennick, 2003]
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Fig. 7: Silicon Foundry Adoption Rate by Process Technology.
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a memory microchip the growth of integration
density goes in parallel with Gordon Moore’s curve
(figure 8). But due to reconfigurability overhead only
about one out of about 100 to 200 transistors directly
serves the application, so that the logical integration
density of FPGAs is behind that of memory (Moore
curve) by 4 orders of magnitude (figure 9). But there
are numerous publications reporting substantial
speed-ups mostly ranging up to 2 orders of
magnitude, obtained from software-to-FPGA
migration of a variety of applications ([3], see slide
3, [4]) - although the clock speed of an FPGA is
about a factor of 5 slower than that of a
microprocessor of comparable technology.
Bypassing the memory wall. The FPGA
efficiency paradox is explained by the much higher
degree of parallelism possible within an FPGA, as
well as by avoiding the massive memory cycle
overhead inevitable with the instruction-stream-
based classical machine paradigm (where memory
cycles are slower than processor clock cycles by
more than two orders of magnitude). Bypassing the
memory wall is one of the key speed-up factors
coming early with the time of Makimoto’s third wave.
Another speed-up factor is the multiple level
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Fig. 10: Integration density of coarse grain reconfigurable array

parallelism being much more flexible than classical
parallelism obtained only by concurrent software
processes.

Reconfigurable Computing. Implementing an
application onto an FPGA is a design activity at gate
level, where a CLB is about one bit wide - unless not
yet really available good tools hide this abstraction
level from the users point of view. However, the use
of coarse grain morphware arrays (rDPAs:
reconfigurable Data Path Arrays, also commercially
available [10] slide 5) with word-width rDPUs
(reconfigurable Data Path Units, 32 bits wide, for
instance) directly featuring number crunching
functionality turns programming from logic synthesis
to computing [11] [12] [13].

Algorithmic Complexity
Shannon's Law

Processor
Complexity
Maoore s Law

Fig. 11: Cellular wireless communication: performance require-

ments growing faster than Moore’s law [Jan Rabaey].

High Area Efficiency. When a coarse grain
morphware array is well designed like a processor
core in full custom structured design style using
wiring by abutment, it reaches almost the integration
density of Gordon Moore's curve (figure 10).
Because of the high processing power of a rDPU
only a small array is needed for most applications,
like around a hundred rDPUs, for instance.
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Compared to modern FPGAs with up to a million
CLBs this massively decreases reconfigurable
interconnect fabrics requirements. The availability of
7 or more metal layers allows the interconnect
fabrics can be layouted over the rDPU so no extra
interconnect areas are needed outside rDPU clocks.
Also configuration memory is drastically reduced, so
that the configuration time is massively reduced.
Physical and logical integration density are almost
the same (figure 10). Morphware also yields more
MOPS per milliwatt (slide 4).
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Coarse Grain Applications. For coarse grain
morphware platforms there is a wide variety of
applications like any kind of HPC, but also
consumer electronic products and other embedded
systems. An example is cellular wireless
communication, where performance requirements
are growing faster than Moore’s law (figure 11) what
cannot bed met even by the most powerful DSPs.
Coarse grain morphware platforms provide the
flexibility needed to cope with multiple (de)coding
standards and multiple media changing on the fly
(voice, voice over IP, image, video, SMS, e-mail,
and others). Here coarse grain platforms are
already well practicable for base stations. But
because of low power requirements we need a
future generation of morphware platforms for
handies and similar battery-driven appliances.
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Coarse grain for (H)DTV. Another important area
of coarse grain morphware application area is
(H)DTV where picture quality is the main battlefield
(figure 12). Enormous performance is required
(figure 13). Examples of processing tasks are noise
reduction, picture improvement, artefact removal (e.
g. smoothing horizontal and vertical lines), scaling of
display size, scan rate and frame rate conversion,
multiple standard video (de)coding, variable file
format conversions, variable content security
formats, and many other processing tasks. In this
field of applications programmability is inevitable
because casting improved algorithms onto silicon is
too expensive, because ASIC chip development
takes too long, and, because of ASIC inflexibility
hampers adding new features. Coarse grain arrays
bring continuity by programmability and drastically
more implementation efficiency by morphware re-
use. For (H)DTV implementations on morphware a
benefit has been reported by a factor of 4 in
development time, and, by a factor of 5 in
development cost [10].

The Anti Machine. The main  problem of
supercomputing stems from the instruction-stream-
driven basic paradigm, sometimes called von
Neumann paradigm. The benefit of the morphware-
based anti machine goes far beyond bridging the
gap between microprocessor and ASIC (figure 14).
Meanwhile is has been recognized, that the only
roadmap to drastically higher HPC efficiency, and to
solve the problem of deficits in education [14] [15],
is the introduction of a second machine paradigm,
which is data-stream-driven - the anti machine [15]
[16] [17] [18], the direct counterpart to the von
Neumann paradigm. We need a duality of 2
machine paradigms (figure 4 e). But for the anti
machine one or more data counters are used
instead of a program counter (slide 6). But there are
unsymmetries: in anti machines the data counter is
co-located with a memory bank, so that the memory
bank is an auto-sequencing memory module (asM),
being able to autonomously generate a data stream
(slide 6).

Configware replacing Software. Anti machines
cannot be programmed by software (programming
in time, which is instruction-stream-based). To
program morphware we need configware instead
(for configuration: i. e. programming in space) and

hardwired
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flowware to program the asMs for the data streams
needed run time (see slide 7). The co-compiler we
need has to generate three different blocks of three
different kinds of code (figure 15, slide 8): software
code (for the host), configware code, and, flowware
code. Figure 15 shows the structure of an
automatically partitioning academic software /
configware / flowware co-compiler [19] [20].
Configware compilation [21] [22] and automatic
partitioning [23] [24] can be easily implemented by
simulated annealing. Figure 16 summarizes a
commercial example of an integrated development
environment for coarse grain morphware [10].

C-source NML library
v v
Preprocessor
pC XPP
C-Compiler C-Compiler

EMultl LaxerE EPINAY
I AMBA
ucC XPP
Debugger Debugger

Integrated debug environment

Fig. 16: PACT corp. Integrated Development Environment

Makimoto’s last wave. Reiner Hartenstein has
merged Makimoto’'s law with Nick Tredennicks
paradigm shift model (figure 3). A remaining
guestion is: will Makimoto’s third wave really a wave,
and how long will it take? The conclusion from Nick
Tredennicks paradigm shift model is, that there will
not be a fourth Makimoto’'s wave, because all
degrees of freedom have already been exhausted
by the third wave. The consequence is, that
Makimoto’s third wave will last much longer than 20
years: probably it will last for all the rest of the life
time of the silicon IC industry.

Reconfigurable HPC. Hartenstein predicted [11]
[12] [13] [25] [26], that the second phase of
Makimoto’s third wave will have a different shape

(figure 17). Because of their very high area
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efficiency and very high throughput coarse grain
morphware will become important, also driven by
the coming rush from classical high performance
computing (HPC) to reconfigurable HPC [3] [8] [14]
[17]. But general purpose rDPAs may still be
unrealistic, so that domain-specific arrays are more
likely. This means somewhat limited flexibility: i. e.
only slightly customized (compare figure 17).

Mapping HPC onto FPGAs ? Featuring multi-
context coarse grain morphware architectures future
rDPA might become almost general purpose.
Mapping rDPAs onto FPGAs might make sense with
future high-density FPGA architectures. So the final
waveform of Makimoto’s third wave should go up to
slightly standardized (figure 17).

The Personal Supercomputer (PS). New CPU
technology will not help to beef up old HPC
architectures because this does not solve the
memory wall problem. A remedy can be obtained
only by a fundamental paradigm shift. Overcoming
the sustained performance barrier and drastic
hardware cost reduction is possible only by software
to configware migration using coarse grain
morphware  platforms. The  Reconfigurable
Computing HPC rush is already running [17] [18]
[27] [28]. Cheap supercomputing power at every
home and office by a morphware extension card to
the PC, featuring Reconfigurable High Performance
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Fig. 18: Makimoto’s 3rd waves: the impact of the 2nd design cris
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Computing will bring a revival of the PC business. But intel seems not yet having recognized this trend. The
success of the PS will repeat the success story of the software industry for the already existing configware
industry (slide 12). Who will be the Bill Gates o the configware industry ? Figure 18 shows how the current
configware rush fits to Makimoto's third wave.
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